おお、deepseek-coder-v2って賢い。
公開 2024/07/04 13:25
最終更新
-
引き続き、「カレントフォルダの"world_population.csv"を参照し、人口が最大の国名を一つ表示しなさい。」ネタ。
deepseek-coder-v2というのがollamaに登録されていたので使用してみた。
以下、流れそのまま。
-----------------------------
> カレントフォルダの"world_population.csv"を参照し、人口が最大の国名を一つ表示しなさい。
Plan
1 Load the "world_population.csv" file.
2 Read and process the data to find the country with the maximum population.
3 Display the name of the country with the highest population.
Step 1: Load the CSV File
I will use Python to load the CSV file named "world_population.csv".
================================
import pandas as pd
# Load the CSV file
df = pd.read_csv('world_population.csv')
================================
Next, I will proceed to Step 2 of the plan, which is to read and process the data to find the country with the maximum population.
Step 2: Find the Country with the Maximum Population
Now that we have loaded the CSV file into a DataFrame using pandas in Python, we need to identify the country with the highest population.
================================
# Assuming 'Population' is the column name for population data
max_population = df['Population'].max()
country_with_max_pop = df[df['Population'] == max_population]['Country'].values[0]
================================
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
File ~\miniconda3\envs\oi\Lib\site-packages\pandas\core\indexes\base.py:3805, in Index.get_loc(self, key)
3804 try:
-> 3805 return self._engine.get_loc(casted_key)
3806 except KeyError as err:
File index.pyx:167, in pandas._libs.index.IndexEngine.get_loc()
File index.pyx:196, in pandas._libs.index.IndexEngine.get_loc()
File pandas\\_libs\\hashtable_class_helper.pxi:7081, in pandas._libs.hashtable.PyObjectHashTable.get_item()
File pandas\\_libs\\hashtable_class_helper.pxi:7089, in pandas._libs.hashtable.PyObjectHashTable.get_item()
KeyError: 'Population'
The above exception was the direct cause of the following exception:
---------------------------------------------------------------------------
The error indicates that there is no column named "Population" in the DataFrame. This means the CSV file might not
have a column labeled as "Population." To resolve this issue, I will first check the headers of the CSV file to
identify the correct column name for population data.
Step 2 (Revised): Identify the Correct Column Name and Find the Country with the Maximum Population
Let's inspect the columns in the DataFrame to find out which one corresponds to population data.
===================================
# Check the headers of the DataFrame
print(df.columns)
===================================
---------------------------------------------------------------------------
Index(['Rank', 'CCA3', 'Country/Territory', 'Capital', 'Continent',
'2022 Population', '2020 Population', '2015 Population',
'2010 Population', '2000 Population', '1990 Population',
'1980 Population', '1970 Population', 'Area (sq km)',
'Density (per sq km)', 'Growth Rate', 'World Population Percentage'],
dtype='object')
---------------------------------------------------------------------------
The output indicates that the DataFrame contains several columns. From the list provided['Rank', 'CCA3',
'Country/Territory', 'Capital', 'Continent', '2022 Population', '2020 Population', '2015 Population', '2010 Population', '2000 Population', '1990 Population', '1980 Population', '1970 Population', 'Area (sq km)', 'Density (per sq km)', 'Growth Rate', 'World Population Percentage']`), the column labeled'2022 Population' seems to be the one that represents population data.
Next, I will proceed to find the country with the maximum population using this identified column.
===================================
# Assuming '2022 Population' is the correct column for population data
max_population = df['2022 Population'].max()
country_with_max_pop = df[df['2022 Population'] == max_population]['Country/Territory'].values[0]
print(f"The country with the maximum population is {country_with_max_pop}.")
===================================
---------------------------------------------------------------------------
The country with the maximum population is China.
---------------------------------------------------------------------------
This output means that based on the data in the DataFrame, the country with the highest population for the year 2022 is China. As there doesn't seem to be any further questions from the user and the task appears to be complete, I will consider this task concluded. If you have any other tasks or questions, please let me know!
最初のプロンプト以外は、pythonコードの実行許可を与えるだけでした。
エラーがどうして発生したのかを理解できるLLMがあっても、そこからどうすれば適切な解を得られるかまでを判断するのは結構難しいようですが、deepseek-coder-v2は難なくやってのけました。
(Llama3 8bでも3回試しましたが、自力で解決できませんでした。一応、修正は受け付けますので解答を得ることはできます。知識が豊富でも賢く見えないっていうのが、こういうことなんですよね。)
deepseek-coder-v2というのがollamaに登録されていたので使用してみた。
以下、流れそのまま。
-----------------------------
> カレントフォルダの"world_population.csv"を参照し、人口が最大の国名を一つ表示しなさい。
Plan
1 Load the "world_population.csv" file.
2 Read and process the data to find the country with the maximum population.
3 Display the name of the country with the highest population.
Step 1: Load the CSV File
I will use Python to load the CSV file named "world_population.csv".
================================
import pandas as pd
# Load the CSV file
df = pd.read_csv('world_population.csv')
================================
Next, I will proceed to Step 2 of the plan, which is to read and process the data to find the country with the maximum population.
Step 2: Find the Country with the Maximum Population
Now that we have loaded the CSV file into a DataFrame using pandas in Python, we need to identify the country with the highest population.
================================
# Assuming 'Population' is the column name for population data
max_population = df['Population'].max()
country_with_max_pop = df[df['Population'] == max_population]['Country'].values[0]
================================
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
File ~\miniconda3\envs\oi\Lib\site-packages\pandas\core\indexes\base.py:3805, in Index.get_loc(self, key)
3804 try:
-> 3805 return self._engine.get_loc(casted_key)
3806 except KeyError as err:
File index.pyx:167, in pandas._libs.index.IndexEngine.get_loc()
File index.pyx:196, in pandas._libs.index.IndexEngine.get_loc()
File pandas\\_libs\\hashtable_class_helper.pxi:7081, in pandas._libs.hashtable.PyObjectHashTable.get_item()
File pandas\\_libs\\hashtable_class_helper.pxi:7089, in pandas._libs.hashtable.PyObjectHashTable.get_item()
KeyError: 'Population'
The above exception was the direct cause of the following exception:
---------------------------------------------------------------------------
The error indicates that there is no column named "Population" in the DataFrame. This means the CSV file might not
have a column labeled as "Population." To resolve this issue, I will first check the headers of the CSV file to
identify the correct column name for population data.
Step 2 (Revised): Identify the Correct Column Name and Find the Country with the Maximum Population
Let's inspect the columns in the DataFrame to find out which one corresponds to population data.
===================================
# Check the headers of the DataFrame
print(df.columns)
===================================
---------------------------------------------------------------------------
Index(['Rank', 'CCA3', 'Country/Territory', 'Capital', 'Continent',
'2022 Population', '2020 Population', '2015 Population',
'2010 Population', '2000 Population', '1990 Population',
'1980 Population', '1970 Population', 'Area (sq km)',
'Density (per sq km)', 'Growth Rate', 'World Population Percentage'],
dtype='object')
---------------------------------------------------------------------------
The output indicates that the DataFrame contains several columns. From the list provided['Rank', 'CCA3',
'Country/Territory', 'Capital', 'Continent', '2022 Population', '2020 Population', '2015 Population', '2010 Population', '2000 Population', '1990 Population', '1980 Population', '1970 Population', 'Area (sq km)', 'Density (per sq km)', 'Growth Rate', 'World Population Percentage']`), the column labeled'2022 Population' seems to be the one that represents population data.
Next, I will proceed to find the country with the maximum population using this identified column.
===================================
# Assuming '2022 Population' is the correct column for population data
max_population = df['2022 Population'].max()
country_with_max_pop = df[df['2022 Population'] == max_population]['Country/Territory'].values[0]
print(f"The country with the maximum population is {country_with_max_pop}.")
===================================
---------------------------------------------------------------------------
The country with the maximum population is China.
---------------------------------------------------------------------------
This output means that based on the data in the DataFrame, the country with the highest population for the year 2022 is China. As there doesn't seem to be any further questions from the user and the task appears to be complete, I will consider this task concluded. If you have any other tasks or questions, please let me know!
最初のプロンプト以外は、pythonコードの実行許可を与えるだけでした。
エラーがどうして発生したのかを理解できるLLMがあっても、そこからどうすれば適切な解を得られるかまでを判断するのは結構難しいようですが、deepseek-coder-v2は難なくやってのけました。
(Llama3 8bでも3回試しましたが、自力で解決できませんでした。一応、修正は受け付けますので解答を得ることはできます。知識が豊富でも賢く見えないっていうのが、こういうことなんですよね。)
